At a large university the mean age of the students is mu 22
     At a large university, the mean age of the students is mu = 22.3 years and the standard deviation is sigma =4 years. If we select a random sample of n=36 students, and consider the distribution of the sample mean x , find:  the mean of x distribution, mux =  the standard deviation of x distribution, sigma x =  the probability that sample mean x is 23 years or more.  
  
  Solution
a)
It has the same mean,
u(X) = 22.3
******************
b)
It has a standard deviation of
sigma(X) = sigma/sqrt(n) = 4/sqrt(36) = 0.666666667 [ANSWER]
***************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    23      
 u = mean =    22.3      
           
 s = standard deviation =    0.666666667      
           
 Thus,          
           
 z = (x - u) / s =    1.05      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.05   ) =    0.146859056 [ANSWER]

