Find the exact solutions to the given equations in the inter
Find the exact solutions to the given equations in the interval [0,2pi): A) sin^2= cosx+1 B) cos2x+ 3cosx-1= 0 C) csc^2+ cscx= 2 D) tan x/2= sinx E) sinx+ cosx= 1 F) sinxcosx= -1/2
Solution
interval [0,2pi)
A) sin^2x = cosx+1
Use identity : sin^2x +cos^2x =1
1-cos^2x = cosx +1
cos^2x +cosx =0
cosx( cosx +1) =0 ---->
cosx =0
x = pi/2 , 3pi/2
cosx = -1
x = pi
Solution : pi/2 , pi , 3pi/2
B) cos2x+ 3cosx-1= 0
use identity : cos2x = 2cos^2x -1
So,2cos^2x -1 +3cosx -1 =0
2cos^2x +3cosx -2 =0
2cos^2x +4cosx -cosx -2 =0
2cosx( cosx +2) -1(cosx +2) =0
(2cosx -1)(cosx+2) =0
neglect : cosx +2 =0
so, 2cosx -1 =0
cosx = 1/2
x = pi/3 , 2pi -pi/3 = pi/3 , 5pi/3
C) csc^2+ cscx= 2
csc^2x + cscx -2 =0
csc^2x + 2cscx -cscx -2 =0
cscx( cscx +2) -1(cscx +2)=0
(cscx +2)(cscx -1) =0 ;
cscx = -2 ----> sinx = -1/2
x = pi +pi/6 , 2pi -pi/6
x = 7pi/6 , 11pi/6
cscx -1 =0
sinx = 1
x = pi/2
Solution : x = pi/2 , 7pi/6 , 11pi/6
D) tan x/2= sinx
sinx/2 /cosx/2 = 2sinx/2*cosx/2
Now sinx/2 /cosx/2 - 2sinx/2*cosx/2 =0
sin(x/2) ( 1-cos^2(x/2) =0
sin(x/2) =0--->
x/2 = pi ---> x = 2pi ( outside the given interval)
1- cos^2(x/2) =0
cos(x/2) = 1 ----> x/2 = 0 ,
x =0
cos(x/2) = -1 ----> x/2 =pi
x = 2pi ( outside the given interval)
Solution : x = 0

