Of 1000 randomly selected cases of lung cancer 845 resulted
Of 1000 randomly selected cases of lung cancer, 845 resulted in death within 10 years. Construct a 95% two-sided confidence interval on the death rate from lung cancer. Use a z-score rounded to 2 decimal places.
 Round your answers to 3 decimal places.
 (a) Calculate the estimated proportion of lung cancer deaths
p =
( b) Calculate the 95% CI on the death rate from cancer.
( ______________ p ____________ )
Solution
A)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.845       [ANSWER]
*****************
b)  
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.011444431          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.96          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.022431085          
 lower bound = p^ - z(alpha/2) * sp =   0.822568915          
 upper bound = p^ + z(alpha/2) * sp =    0.867431085          
               
 Thus, the confidence interval is              
               
 (   0.822568915   ,   0.867431085   ) [ANSWER]

