Let fx x4 3x3 27x2 387x 2044 Owen that 3 8i is a root
Solution
f(x)=x4-3x3+27x2+387x-2044
given 3+8i is root
since all the coefficients are real conjugate 3-8i is also the root
(x-(3+8i))(x-(3-8i))
=((x-3)-8i)((x-3)+8i)
=(x-3)2-(8i)2
=(x2-6x+9)-(-64)
=x2-6x+73
for other factors divide f(x) by x2-6x+73
x2-6x+73] x4-3x3+27x2+387x-2044 [x2+3x-28
...................x4-6x3+73x2
.............................................................................
.......................3x3-46x2+387x
.......................3x3-18x2+216x
............................................................................
............................-28x2+171x-2044
............................-28x2+171x-2044
..............................................................
...........................................0
factorise x2+3x-28
x2+7x-4x-28
(x+7)(x-4)
x4-3x3+27x2+387x-2044 =(x-(3-8i))(x-(3+8i))(x+7)(x-4)
for roots f(x)=0
(x-(3-8i))(x-(3+8i))(x+7)(x-4)=0
x =3-8i,x =3+8i ,x =-7,x =4
