The standard IQ test has a mean of 96 and a standard deviati
The standard IQ test has a mean of 96 and a standard deviation of 14. We want to be 99% certain that we are within 4 IQ points of the true mean. Determine the required sample size.
A. 178
B. 10
C. 1
D. 82
Solution
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.005  
       
 Using a table/technology,      
       
 z(alpha/2) =    2.575829304  
       
 Also,      
       
 s = sample standard deviation =    14  
 E = margin of error =    4  
       
 Thus,      
       
 n =    81.27748336  
       
 Rounding up,      
       
 n =    82   [OPTION D]

