In a particular city the age of the roofs of homes are appro
In a particular city, the age of the roofs of homes are approximately uni-
formly distributed between 2 and 10 years. (Note this implies the mean is µ = 6 years and
the standard deviation is = 2:309 years). If a random sample of 64 homes is selected, what
is the probability that the sample mean roof age will be between 5.4 and 6.2 years?
Solution
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    5.4      
 x2 = upper bound =    6.2      
 u = mean =    6      
 n = sample size =    64      
 s = standard deviation =    2.309      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -2.078822001      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    0.692940667      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.018816857      
 P(z < z2) =    0.755826606      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.737009749   [ANSWER]  

