Differential Equations Find a particular solution to the lin
Differential Equations
Find a particular solution to the linear system using the given initial values.
x\' = y ; x(0) = 1
x\' + y\' = -x + y ; y(0) = 1
Solution
Solution: 29/04/2016.
X1 = y
dx/dt = y
Dx –y = 0 --------------------------- (1)
X1 + y1 =-x+y
dx/dt + x + dy/dt –y = 0
( D+1) x + ( D-1) y = 0 --------------------(2)
Multiply equation (1) with D+1, multiply equation (2) with D
(1)x (D+1) – (2) x D
solving (1) and (2)
D (D+1 ) x – (D+1) y = 0 --------------------(3)
D (D+1) x + D ( D-1) y =0 ---------------------(4)
---------------------------------------------------------------------------------------------------------------------
F(D) = D2 + 1
The A.E is f(m) = m2 +1
M= +I, -i
Yc = C1 cos X + C2 sin x
Solution of ( 6) is yc = C1 cos X + C2 sin x
Now I D -1 I = 0
I D+1 D-1 I
Given x((0) = 1 and y(0) = 1
1= C1 cos (0) + C2 sin (0 )
1 = C1
Therefore G.S of (6) is 1= Cos x +C.

