Convert log3 59 to a natural logarithm and evaluate Solve e4
Convert log_3 59 to a natural logarithm and evaluate. Solve e^4x
Solution
23 ) y = log3(59) = log59/log3
divide num and den by log(e)
y = log59/loge / log3 /log3
= ln(59)/ln(3)
Using calculator we find: y = 3.711
25) e^3x < 98.6
take natural log on both sides:
ln(e^3x) < ln(98.6)
now we know ln(e) =1
So, 3x < ln(98.6)
x < ln(98.6)/3
x< 4.18
