Solve 1x3dydx3x2yfx explicitly with initial condition y01 an
Solve (1+x^3)(dy/dx)+3x^2y=f(x) explicitly with initial condition y(0)=1 and f(x)={e^x, 0<=x<=2; -x, x>=2
Solution
(1+x^3)(dy/dx)+3x^2y=f(x)
dy/dx + (3x^2 / 1 + x^3) * y = f(x) / (1 + x^3)
IF = e^(integral of (3x^2 / 1 + x^3) )
IF = e^ln|1 + x^3|
IF = 1 + x^3
Multiply all over by 1 + x^3 :
(1 + x^3) * [dy/dx + (3x^2 / 1 + x^3) * y = f(x) / (1 + x^3)]
(1+x^3)*dy/dx + 3x^2y = f(x)
d/dx(y(1+x^3)) = f(x)
Integrating :
y(1+x^3) = integral of f(x)
f(x)={e^x, 0<=x<=2;
-x, x>=2 }
y(0) = 1
So, f(x) = e^x
y(1 + x^3) = integral of e^x
y(1 + x^3) = e^x + C
y(0) = 1 :
1(1 + 0^3) = e^0 + C
1 = 1 + C
C = 0
So, y(1 + x^3) = e^x
y = e^x / (1 + x^3) ---> ANSWER
