By applying the Newton Raphson technique solve the following
By applying the Newton Raphson technique, solve the following non linear
 expressions in order to determine the values of x and y up to a tolerance of
 0.001. Do not iterate more than 4 times.
Solution
clc
 clear;
 itr=0;
 tol=10;
 x=1;y=1;
 while ( itr<4 && tol>=0.001),
     itr=itr+1;
     f1=2*x^2+y^2-8;
     f2=6*x+2*y^2-5;
     dfd=[4*x 2*y;6 4*y];
     df=[f1;f2];
     d=inv(dfd)*df;
     x=x+d(1);
     y=y+d(2);
     tol=max(abs(d));
 end
 if tol>=0.0001,
     disp(\'not conversing by this newton method \');
     disp(\'tolerence after 4 iterations\');
     disp(tol);
 else
     disp(\'tol\');
     disp(tol);
     disp(\'ieration\')
     disp(\'itr\');
     disp(\'x=\');
     disp(x);
     disp(\'y=\');
     disp(y);
 end
result:
not conversing by this newton method
 tolerence after 4 iterations
    11.9617

