asin x using the difference identity bcos x using the halfan
a)sin x, using the difference identity
b)cos x, using the half-angle identity
Solution
x= pi/12
a) sinx = sinpi/12
= sin( pi/3 - pi/4)
Use sin(x-y) = sinxcosy - cosxsiny
sinpi/3cospi/4 - cospi/3sinpi/4
sqrt(3)/2*1/sqrt2 - (1/2)*(1/sqrt2)
[ sqrt(3) - 1]/2sqrt(2)
b) cosx = cos(pi/12)
cos((pi/6)/2)
cos(x/2) = sqrt[(1+cosx)/2]
cos(pi/12) = sqrt[( 1+sqrt(3)/2)/2]
= sqrt[(2+sqrt3)]/2
