Verify the following identities sin 3 theta 3 sin theta 4
Verify the following identities: sin 3 theta = 3 sin theta - 4 sin3 theta
Hint: write 3 theta = 2 theta + theta and use the sum formula followed by an application of the double angle identities and finally the Pythagorean identity.
Solution
prove sin3@ = 3*sin@ - 4*sin3@
LHS:
sin3@ = sin( 2@ + @)
= sin2@ *cos@ + cos2@ *sin@ [ sin(A+B) = sinA cosB + cosA sinB]
= ( 2*sin@*cos@) *cos@ + ( 1-2*sin2@)*sin@
= 2*sin@*cos2@ + sin@ - 2*sin3@
= 2*sin@ ( 1-sin2@ ) + sin@ - 2*sin3@ [ sin2@ + cos2@ = 1 , cos2@ = 1-sin2@]
= 3sin@ - 4*sin3@
= RHS
LHS = RHS
