find the probabilities Use a calculator and the Ztable in yo
Solution
9.
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    435.77      
 u = mean =    337      
           
 s = standard deviation =    83      
           
 Thus,          
           
 z = (x - u) / s =    1.19      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   1.19   ) =    0.882976804 [ANSWER]
****************
10)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    435.77      
 u = mean =    337      
           
 s = standard deviation =    83      
           
 Thus,          
           
 z = (x - u) / s =    1.19      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.19   ) =    0.117023196 [ANSWER]
*********************
11)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    238.23      
 u = mean =    337      
           
 s = standard deviation =    83      
           
 Thus,          
           
 z = (x - u) / s =    -1.19      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -1.19   ) =    0.117023196 [ANSWER]
**************************
12.
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    124.52      
 x2 = upper bound =    549.48      
 u = mean =    337      
           
 s = standard deviation =    83      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -2.56      
 z2 = upper z score = (x2 - u) / s =    2.56      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.005233608      
 P(z < z2) =    0.994766392      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.989532784   [ANSWER]  
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


