Body temperatures in degrees Fahrenheit have been recorded f
Body temperatures (in degrees Fahrenheit) have been recorded for a sample of 130 healthy adults (Shoemaker, 1996). The sample mean body temperature is 98.249°F, and the sample standard deviation is 0.733°F.
d. Calculate a 95% confidence interval for the population mean body temperature, based on the sample results for these 130 healthy adults. [Round your answer to 2 decimal places.]
g. Suppose the sample size had been 13 rather than 130, but the sample statistics turned out exactly the same. How would you expect a 95% confidence interval to differ in this case from the 95% interval in part d?
h. Produce the confidence interval mentioned in part g, and describe how the interval has changed. [Round your answer to 1 decimal place.]
95% CI is?
Midpoint is?
width is?
Solution
d)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    98.249          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    0.733          
 n = sample size =    130          
               
 Thus,              
 Margin of Error E =    0.126002856          
 Lower bound =    98.12299714          
 Upper bound =    98.37500286          
               
 Thus, the confidence interval is              
               
 (   98.12299714   ,   98.37500286   ) [ANSWER]
**********************
g)
This would produce a wider confidence interval as the standard error would be larger. You would also use t instead of z, which is always larger as well.
***********************
h)
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    98.249          
 t(alpha/2) = critical t for the confidence interval =    2.17881283          
 s = sample standard deviation =    0.733          
 n = sample size =    13          
 df = n - 1 =    12          
 Thus,              
 Margin of Error E =    0.442947467          
 Lower bound =    97.80605253          
 Upper bound =    98.69194747          
               
 Thus, the confidence interval is              
               
 (   97.80605253   ,   98.69194747   ) [ANSWER]
Midpoint = X = 98.429 [ANSWER]
width = 2*E = 0.885894934 [ANSWER]
So, it is now wider, but it still has the same midpoint.


