Using the Bernoulli method solve the differential equation t
     Using the Bernoulli method, solve the differential equation: t^2 dy/dt + y^2 = ty. 
  
  Solution
t^2y\'+y^2=ty
t^2y\'-ty=-y^2
n=2 is highest power of y
So substitution is
u=y^{1-n}=y^{1-2}=1/y
y=1/u
y\'=-u\'/u^2
SUbstituting gives
t^2y\'-ty=-y^2
-t^2u\'/u^2-t/u=-1/u^2
t^2u\'+tu=1
tu\'+u=1/t
(tu)\'=1/t
Integrating gives
tu=ln(t)+C
u=(ln(t)+C)/t
 Hence,
y=t/(C+ln(t))

