Find the general solution of the higher order and solve the
Find the general solution of the higher order and solve the given initial value. Please show work, thank you.
m^3+12m^2+36m=0 y(0)= 0 , y\'(0)= 1 , y\"(0)= -7
Solution
WE are given the characteristic equation
m^3+12m^2+36m=0
m(m+6)^2=0
SO general solution is
y(x)=A +exp(-6x)(B+Cx)
y(0)=A+B=0 ie A=-B
y(x)=B(-1+exp(-6x))+Cx exp(-6x)
y\'(x)=-6B exp(-6x)+C exp(-6x)(-6x+1)
y\'(0)=-6B+C=1
Hence, C=1+6B
y(x)=B(-1+exp(-6x))+(1+6B) x exp(-6x)
y\'\'(x)=12e^(-6 x) (18 B x-3 B+3 x-1)
y\'\'(0)=12(-3B-1)=-7
3B+1=7/12
3B=-5/12
B=-5/36
y(x)=-5(-1+exp(-6x))/36+(1-5/6) x exp(-6x)
y(x)=-5(-1+exp(-6x))/36+x exp(-6x)/6
