If sin4 x A B cos 2x C cos 4x then A B C SolutionSolut
     If sin^4 x = A + B cos 2x + C cos 4x, then  A =  B =  C =   
  
  Solution
Solution:
Given sin^4(x) = A + Bcos(2x) + Ccos(4x)
sin^2  = (1 - cos 2) / 2
 cos^2  = (1 + cos 2) / 2.
 
 Let
 
 sin^4 x = A + B cos 2x + C cos 4x ................... (1)
 
 We have
 
 sin^4 x = ( sin^2 x )^2 = [(1 - cos 2x) / 2]^2
      = (1/4) * [ 1 - 2 cos 2x + cos^2 2x ]
        = (1/4) * { 1 - 2 cos 2x + [ (1 + cos 4x) / 2]}
            = (1/4) * [ ( 2 - 4 cos 2x + 1 + cos 4x ) / 2 ]
    = (1/8) * [ 3 - 4 cos 2x + cos 4x ]
            = (3/8) - (1/2).cos 2x + (1/8).cos 4x ..........................(2)
 
 Comparing (1) with (2),
 
 A = 3/8, B = -1/2 and C = 1/8.

