Aim is to transmit water from the source to the end point Op
Solution
SOLUTION
Where
f =0.02
L =2000m
D = 0.8m
Z1 = 200m
Z2 = 170m
Applying Bernoulli’s equation between the Reservoir A and B.
PA/g + VA2/2g + z1 = PB/g + VB2/2g + z2 +hL
0 + 0 + 200 = 0 + VB22/19.62 + 170 +hL
(200 - 170) = VB2/19.62+hL
0.0509 VB2 +hL = 30m Eq. (1)
hf = f ( L/D ) ( V2/2g)
hL = hf,A + hf,B + hf,C+hf,D+hf,E+hf,F
hf,A = 0.02 ( 2000/0.8) ( VA2/2g ) = 2.55VA2
hf,A = hf,B=hf,C=hf,D=hf,E=hf,F
hL = 2.55VA2 + 2.55VB2 +2.55VC2 +2.55VD2 +2.55VE2 +2.55VF2
Substitute the above with Equ 1
0.0509 VB2 +hL = 30m Eq. (1)
2.55VA2 + 2.55VB2 +2.55VC2 +2.55VD2 +2.55VE2 +2.55VF2 = 30m Eq. (2)
we can find other relation between VA,VB,VC,VD,VE and VF
Continuity Equation
Qa + Qb +Qc +Qd +Qe +Qf = 0
/4 × 0.8VA + /4 × 0.8VB + /4 × 0.8VC + /4 × 0.8VD + /4 × 0.8VE + /4 × 0.8VF =0 - Equ 3
VB = VD = VF=VE
VA = VC
3 x (0.785*VA2) = 4 (0.785*VB2) - Equ 4
From above VB= VD=VE=VF=0.75 VA
substitute in Equ 3
/4 × 0.8VA + /4 × 0.8*0.75VA + /4 × 0.8VC + /4 × 0.8*0.75VA+ /4 × 0.8*0.75VA+ /4 × 0.8*0.75VA =0
/4 × 0.8VA + /4 × 0.8VC = -1.884 VA
2.512VA = -0.785 VC
VC = 3.2VA
Apply in Equ 2
2.55VA2 + (2.55*0.75VA2)*4 +2.55(3.2VA)2 = 30m
VA = 1.3 m/s
VC = 3.2 *1.3 = 4.16 m/s
VB= VD=VE=VF=0.75 *1.3 = 0.975 m/s
QA = /4 × 0.8*1.3 = 0.82m3/s
QB = /4 × 0.8*0.975 = 0.61m3/s
QC = /4 × 0.8*4.16 = 2.62m3/s
QD = /4 × 0.8*0.975 = 0.61m3/s
QE = /4 × 0.8*0.975 = 0.61m3/s
QF = /4 × 0.8*0.975 = 0.61m3/s
The Maximum Discharge of System = 2.62m3/s
HEAD LOSS
0.0509 (0.975)2 +hL = 30
hL = 29.95


