find the exact value under the given conditions sin817 pi2
find the exact value under the given conditions.
sin()=8/17, pi/2< ; cos=20/29, 0<<pi/2 Find sin(-)
Solution
sin(alpha)=8/17 pi/2< alpha<pi
here opposite=8 hypotenuse=17
adjacent=sqrt(hypotenuse2-opposite2) = sqrt(172-82)=15
In second quadrant cosine is negative
Therefore cos alpha=-15/17
cos beta= 20/29
adjacent=20 hypotenuse=29
opposite = sqrt(hypotenuse2-adjacent2) = sqrt(292-202)= 21
sin beta=21/29
sin(alpha-beta) = sin alpha cos beta - cos alpha sin beta = (8/17)(20/29)-(-15/17)(21/29)
= (160/493)+ (315/493)= 475/493
