An investor is planning on buying a parking garage The profi
An investor is planning on buying a parking garage. The profitability of the project depends on the parking patterns of the potential customers at the garage. The investor assumes that 40% of the customers stay less than 1 hour, 20% will stay from 1 to 2 hours, 15% will stay from 2-4 hours, and 25% will stay more than 4 hours. In a random sample of the parking patterns at a nearby parking lot the following distribution was observed:
1-2 hrs
Test the investor\'s assumptions at the 5% level of significance.
| Time: | <1 hr | 1-2 hrs | 2-4 hrs | >4 hrs | 
| Observed Frequency: | 100 | 35 | 25 | 40 | 
Solution
Sign. Lvl.   0.05      
           
 Doing an observed/expected value table,          
 O   E   (O - E)^2/E  
 100   80   5  
 35   40   0.625  
 25   30   0.833333333  
 40   50   2  
           
 Using chi^2 = Sum[(O - E)^2/E],          
           
 chi^2 =    8.458333333      
           
 As df = a - 1,           
           
 a =    4      
 df = a - 1 =    3      
           
 Then, the critical chi^2 value is          
           
 significance level =    0.05      
chi^2(crit) =    7.814727903      
           
 Also, the p value is          
           
 p =    0.03743079      
           
 Thus, comparing chi^2 and chi^2(crit) [or, p and significance level], we   REJECT THE NULL HYPOTHESIS.      
 Thus, there is significant evidence to reject the claimed distribution of the distributor. [CONCLUSION]

