Using a inverse trig function find the solution of the equat
Using a inverse trig function, find the solution of the equation in the interval [-pi/2,pi/2]. 3sin^2x-8sinx+4=0
Solution
3 sin^2 x - 8 sin x + 4 = 0
let sin x = y
3y^2 - 8y + 4 = 0
factoring the equation
3y^2 - 6y - 2y + 4 = 0
3y ( y-2 ) - 2(y-2)
(3y-2)(y-2) = 0
y = 2/3 , y = 2
therefore. sin x = 2/3 , x= sin^-1 ( 2/3 ) , x = .7297
sin x = 2 , no solutions
therefore, solution is
x = .7297
![Using a inverse trig function, find the solution of the equation in the interval [-pi/2,pi/2]. 3sin^2x-8sinx+4=0Solution3 sin^2 x - 8 sin x + 4 = 0 let sin x =  Using a inverse trig function, find the solution of the equation in the interval [-pi/2,pi/2]. 3sin^2x-8sinx+4=0Solution3 sin^2 x - 8 sin x + 4 = 0 let sin x =](/WebImages/5/using-a-inverse-trig-function-find-the-solution-of-the-equat-982376-1761504390-0.webp)
