The table shows the results of a survey in which separate sa
The table shows the results of a survey in which separate samples of 400 adults each from the east, south, midwest, and west were asked if traffic congestion is a serious problem in their community. Complete parts (a) and (b) (a) construct a 95% confidence interval for the proportion of adults from the midwest who say traffic congestion is a serious problem. (___, ____) (b) Construct a 95% confidence interval for the proportion of adults from the south who say traffic congestion is a serious problem. (____, ____) east - 37% south - 32% midwest - 28% west - 56%
Solution
A)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.25          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.021650635          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.042434465          
 lower bound = p^ - z(alpha/2) * sp =   0.207565535          
 upper bound = p^ + z(alpha/2) * sp =    0.292434465          
               
 Thus, the confidence interval is              
               
 (   0.207565535   ,   0.292434465   ) [ANSWER]
*******************
b)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.33          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.023510636          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.04608          
 lower bound = p^ - z(alpha/2) * sp =   0.28392          
 upper bound = p^ + z(alpha/2) * sp =    0.37608          
               
 Thus, the confidence interval is              
               
 (   0.28392   ,   0.37608   ) [ANSWER]

