sinabsinabsin2asin2bSolution1 1secx tanx 1secx tanx 2tanx
     sin(a+b)sin(a-b)=sin^2a-sin^2b![sin(a+b)sin(a-b)=sin^2a-sin^2bSolution1) 1/(secx -tanx) - 1/(secx +tanx) = 2tanx LHS :taking (secx -tanx)(secx +tanx) as lcd [ secx +tanx - secx +tanx]/(secx -  sin(a+b)sin(a-b)=sin^2a-sin^2bSolution1) 1/(secx -tanx) - 1/(secx +tanx) = 2tanx LHS :taking (secx -tanx)(secx +tanx) as lcd [ secx +tanx - secx +tanx]/(secx -](/WebImages/5/sinabsinabsin2asin2bsolution1-1secx-tanx-1secx-tanx-2tanx-982403-1761504405-0.webp) 
  
  Solution
1) 1/(secx -tanx) - 1/(secx +tanx) = 2tanx
LHS :taking (secx -tanx)(secx +tanx) as lcd
[ secx +tanx - secx +tanx]/(secx -tanx)(secx +tanx)
=2tanx/(sex^2x -tan^2x)
as per identity 1+tan^2x = sec^2x
So, 2tanx/(1) = 2tan x
RHS
2) (1+ tan^2x)cos^2x =1
LHS
cos^2x +tan^2xcos^2x
cos^2x + (sin^2x/cos^2x)cos^2x
= cos^2x +sin^2x
= 1
4) sin(A+B)sin(A-B) = sin^2A - sin^2B
LHS: sin(A+B)sin(A-B)
(sinAcosB +cosAsinB)(sinAcosB -cosAsinB)
=(sinAcosB)^2 -(cosAsinB)^2
As per identity : 2 sin A sin B = cos(A B) cos(A + B)
So, [cos(A+B - (A-B)) - cos(A+B+A -B)]/2
= [cos(2B ) - cos(2A)]/2
= [(1-2sin^2B ) - (1-2sin^2A)]/2
= sin^2A - sin^2B
RHS
![sin(a+b)sin(a-b)=sin^2a-sin^2bSolution1) 1/(secx -tanx) - 1/(secx +tanx) = 2tanx LHS :taking (secx -tanx)(secx +tanx) as lcd [ secx +tanx - secx +tanx]/(secx -  sin(a+b)sin(a-b)=sin^2a-sin^2bSolution1) 1/(secx -tanx) - 1/(secx +tanx) = 2tanx LHS :taking (secx -tanx)(secx +tanx) as lcd [ secx +tanx - secx +tanx]/(secx -](/WebImages/5/sinabsinabsin2asin2bsolution1-1secx-tanx-1secx-tanx-2tanx-982403-1761504405-0.webp)
