A model for a twostory building is shown Determine the force
Solution
The reaction forces at equlibrium at the supports E & F,
sigma Fv: Re + Rf = 22 ------ eqn 1
sigma Fh: He + Hf = 7 ------- eqn 2
Assuming, sigma Me = 0
6 x 5 + 5 x 5 - (4 x 54 + 3 x 27) + Rf x 5 = 0
Rf = 48.4 kip
Re = 22 - 48.4 = (-) 26.4 kip
At joint E:
vertical force sigma Fe = 0
Tce = Re = (-) 26.4 kip (tensile)
At point F:
theta = arctan(36/27) = 53.13 deg
equilibrium forces at F, sigma horizontal Fh= 0 and Fv=0
sigma Fv = 0
Rf - Tcf cos 53.13 - Tdf = 0
Tcf cos 53.13 - Tdf = 48.4 -------- eqn 3
At point B:
Tab = 4 kip , and Tbd = 5 kip
At point D:
Tcd + Tad sin 53.13 = 3 ----- eqn 4
Tdf - Tcd cos 53.13 - Tbd = 6
Tcd = (Tdf - Tbd - 6)/ cos 53.13
Tcd = 1.66Tdf - 18.33 ----------- eqn 5
Eqn eqn 4 & 5 and rearrange,
1.66 Tdf + 0.79Tad = 21.33 ---------- eqn 6
At point A:
sigma Fv, Tac + Tad cos 53.13 = 5 ----- eqn 7
sigma Fh, Tab + Tad sin 53.13 = 0
using Tab = 4 kip solve for Tab in the above eqn we get,
Tad = (-) 4 / sin 53.13 = (-) 5 kip
Using Tad = (-) 5 kip solve for Tdf in eqn 6,
Tdf = (21.33 + 3.95) / 1.66 = 15.22 kip
Solve for Tcd in eqn 4 using Tad = (-) 5 kip
Tcd = 3 - Tad sin 53.13 = 3 + 5 sin 53.13 = 6.99 kip
Using eqn 3 find Tcf, Tdf = 15.22 kip
Tcf cos 53.13 - Tdf = 48.4
Tcf = 1.66 (48.4 + 15.22) = 105.60 kip
solve for Tac in eqn 7 using Tad = (-) 5kip
Tac + Tad cos 53.13 = 5
Tac = 5 - Tad cos 53.13 = 5 + 3 = 8
Tac = 8 kip

