An SRS of 16 households is selected in Houston and the numbe
An SRS of 16 households is selected in Houston and the number of remote controls is counted. We are interested in a 99% confidence interval for the population mean number. In the sample, the mean number of remote controls is 7 and the sample standard deviation is s=2.9. Determine the margin of error associated with the confidence interval.
Solution
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    7          
 t(alpha/2) = critical t for the confidence interval =    2.946712883          
 s = sample standard deviation =    2.9          
 n = sample size =    16          
 df = n - 1 =    15          
 Thus,              
               
 Lower bound =    4.863633159          
 Upper bound =    9.136366841          
               
 Thus, the confidence interval is              
               
 (   4.863633159   ,   9.136366841   )
Thus, the margin of error is
E = (upper - lower)/2 = 2.136366841 [answer]

