Find the inverse transform of the following function Please
Find the inverse transform of the following function (Please show work)
20) (2)/(s2+2s+10)
22) (e-2s)/(s2)
23) (e(pi)(s) ) /(s2+1)
Solution
20.) First, we can complete the square on the denominator to get s^2 + 2s + 10 = (s + 1)^2 + 3^2,
f(t) = ILT{F(s)}
f(t) = ILT (2/[(s + 1)^2 + 3^2]}
f(t) = 2/3 e^(-t) sin(3t).
22.) By partial fractions,
1/(s^2 = A/s + B/s^2 .
Clearing denominators yields
1 = As + B
s = 0 ==> B = 1
s = 1 , A+B=1
B=1, A=0
So, L^(-1) {e^(-2s)/(s^2}
= L^(-1) {e^(-2s) [1/s^2]}
= (t-2)u(t-2)
23.) if F(s) = 1/(s^2+1)
thne f(t) = sin t
Recall L1[easF(s)](t)=L1[F(s)](ta)u(ta)=f(ta)u(ta)]
Apply that theorem to your F with a=- to obtain
sin(t+pi)(t+pi)
