The formula of de Moivre Prove for any integer n cos theta

The formula of de Moivre. Prove, for any integer n, (cos theta + i sin theta)^n = cos n theta + i sin n theta. Thus, the angle 3 theta may be treated in terms of theta. Obtain a similar formula for sin 3 theta.

Solution

We can prove the theorem in two way one by Induction method and another by using the expansion of ei . Let use the nth power of ei

We have ei = Cos + i Sin So eni =(Cos + i Sin )n

So, eni = 1 + ni + (ni)2/2!   +(ni)3/3! +(ni)4/4!+...........

= 1 + i n - n22/2! - i n33/3! + n44/4! +.............. since i2 = -1, i3 = -i, i4 = 1 and so on

=(1 - n22/2! + n44/4! - ..........) + i ( n - n33/3! +......)

= cosn + sinn

So (Cos + i Sin )n = cosn + sinn

(b) Using n = 3 and expanding we get the result and seperating the real and imoginary, we the part (b) and (c)

 The formula of de Moivre. Prove, for any integer n, (cos theta + i sin theta)^n = cos n theta + i sin n theta. Thus, the angle 3 theta may be treated in terms

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site