The formula of de Moivre Prove for any integer n cos theta
     The formula of de Moivre.  Prove, for any integer n, (cos theta + i sin theta)^n = cos n theta + i sin n theta.  Thus, the angle 3 theta may be treated in terms of theta.  Obtain a similar formula for sin 3 theta. 
  
  Solution
We can prove the theorem in two way one by Induction method and another by using the expansion of ei . Let use the nth power of ei
We have ei = Cos + i Sin So eni =(Cos + i Sin )n
So, eni = 1 + ni + (ni)2/2! +(ni)3/3! +(ni)4/4!+...........
= 1 + i n - n22/2! - i n33/3! + n44/4! +.............. since i2 = -1, i3 = -i, i4 = 1 and so on
=(1 - n22/2! + n44/4! - ..........) + i ( n - n33/3! +......)
= cosn + sinn
So (Cos + i Sin )n = cosn + sinn
(b) Using n = 3 and expanding we get the result and seperating the real and imoginary, we the part (b) and (c)

