There exists a complex z satisfying the following iz 1 i z
     There exists a complex z satisfying the following: iz + 1 = i z - 2 = -1 + i   
  
  Solution
iz+ 1 =i
multiply with -i on both sides
=>-i(iz+ 1 =i)
=>-i2z -i =- i2
=>-(-1)z -i =-(-1)
=> z -i =1
=> z =1 +i
=======================
from second equation
z -2 =-1 +i
z=2-1 +i
z =1 +i
true
, there exists complex number z i.e, 1+i satisfying both equations

