suppose that log7 x3 and log7 y4 use properties of logarithm

suppose that log^7 (x)=3 and log^7 (y)=4. use properties of logarithms to evaluate the following expression.
log^7(xy)

log^7(x/y^2)

log^7(x^2 and squar root of y/7)

log^7(49x^3y)

log^7(squar root of x/7y^3)

Help need to know how to solve

Solution

log^7 (x)=3 and log^7 (y)=4

loga^m = m loga

1). log^7(xy) = log^7(x) + log^7(y) [ by the formule logab = loga+logb]

=3 +4

=7

2). log^7(x/y^2) = log^7 (x) - log^7 (y)^2 [ by using fromule log a/b = log a - log b]

= 3 - 2 log^7(y) [ by log a^m = m loga ]

= 3 - 2.4

= -5

3) log^7 (x^2 . sqrt(y/7)

log^7 (x^2) + log^7 (y/7)

2log^7 x + log^7 (y) - log^7 7

2(3) +4 - 5.88

10 -5.88

4.12

4). log^7(49x^3 y)

log^7 (49) + 3 log^7(x) + log ^7 y [ by log abc = loga + logb +logc]

14 log7 + 3*3 + 4

11.83 +13 =24.83

5).

log^7(squar root of x/7y^3)

log^7 sqrt(x) - log^7 sqrt(7y^3)

1/2 (3) - 1/2 [ log ^7 7 + 3 log^7 y]

3/2 -1/2 [5.88 + 3*4]

3/2 - 1/2[17.88]

1.5 -8.94

-7.44

suppose that log^7 (x)=3 and log^7 (y)=4. use properties of logarithms to evaluate the following expression. log^7(xy) log^7(x/y^2) log^7(x^2 and squar root of
suppose that log^7 (x)=3 and log^7 (y)=4. use properties of logarithms to evaluate the following expression. log^7(xy) log^7(x/y^2) log^7(x^2 and squar root of

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site