Exercise 1123 Algorithmic Because of staffing decisions mana
{Exercise 11.23 (Algorithmic)}
Because of staffing decisions, managers of the Gibson-Marimont Hotel are interested in the variability in the number of rooms occupied per day during a particular season of the year. A sample of 24 days of operation shows a sample mean of 280 rooms occupied per day and a sample standard deviation of 33 rooms.
What is the point estimate of the population variance?
 ______   
Provide a 90% confidence interval estimate of the population variance (to 1 decimal).
 ( ______ , ______ )
Provide a 90% confidence interval estimate of the population standard deviation (to 1 decimal).
 ( ______ , ______ )
Solution
What is the point estimate of the population variance?
 ______   
 
 As s = 33
then
variance = s^2 = 33^2 = 1089 [answer]
**************************
 Provide a 90% confidence interval estimate of the population variance (to 1 decimal).
 ( ______ , ______ )
As              
               
 df = n - 1 =    23          
 alpha = (1 - confidence level)/2 =    0.05          
               
 Then the critical values for chi^2 are              
               
 chi^2(alpha/2) =    35.17246163          
 chi^2(alpha/2) =    13.09051419          
               
 Thus, as              
               
 lower bound = (n - 1) s^2 / chi^2(alpha/2) =    712.1196198          
 upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    1913.370219          
               
 Thus, the confidence interval for the variance is              
               
 (   712.1196198   ,   1913.370219   ) [answer]
               
 *******************************************
 
 Provide a 90% confidence interval estimate of the population standard deviation (to 1 decimal).
 ( ______ , ______ )
Also, for the standard deviation, getting the square root of the bounds,              
               
 (   26.6855695   ,   43.7420875   ) [ANSWER]

