Compute the variance and standard deviation of 110 125 78 87

Compute the variance and standard deviation of 110, 125, 78, 87, 63, 135, 90 and 51

Solution

Getting the mean, X,          
          
X = Sum(x) / n          
Summing the items, Sum(x) =    739      
As n =    8      
Thus,          
X =    92.375      
          
Setting up tables,          
x   x - X   (x - X)^2  
110   17.625   310.640625  
125   32.625   1064.390625  
78   -14.375   206.640625  
87   -5.375   28.890625  
63   -29.375   862.890625  
135   42.625   1816.890625  
90   -2.375   5.640625  
51   -41.375   1711.890625  
          
Thus, Sum(x - X)^2 =    6007.875      
          
Thus, as           
          
s^2 = Sum(x - X)^2 / (n - 1)          
          
As n =    8      
          
s^2 =    858.2678571   [ANSWER, VARIANCE]  
          
Thus,          
          
s =    29.29620892   [ANSWER, STANDARD DEVIATION]  

Compute the variance and standard deviation of 110, 125, 78, 87, 63, 135, 90 and 51SolutionGetting the mean, X, X = Sum(x) / n Summing the items, Sum(x) = 739 A

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site