Use the Law of Sines to solve for all possible triangles tha
Use the Law of Sines to solve for all possible triangles that satisfy the given conditions. (If an answer does not exist, enter DNE. Round your answers to one decimal place. Below, enter your answers so that A1 is smaller than A2.)
b = 42, c = 41, C = 35°
A1 =
A2 =
B1 =
B2 =
a1 =
a2 =
| A1 = | ° | A2 = | ° | |
| B1 = | ° | B2 = | ° | |
| a1 = | a2 = |
Solution
b = 42
c = 41
angle C = 35
applying law of sines
c / sin C = b / sin B
41 / sin 35 = 42 / sin B
sin B = 42 / 71 .48
B1 = 35.98 deg ; B2 = 180 -35.98 = 144.01 deg
A1 = 180 - 35.98 - 35 = 109.05 deg ; A2 = 180 - 144.01 - 35 = 1.0 deg
a1/sinA1 = c/sinC ----> a1 = sin109.05*41/sin35 = 67.6
a2/sinA2 = c/sinc -----> a2 = sin1*41/sin35 = 1.25 = 1.3
