Given a population where the probability of success is p 40
Given a population where the probability of success is
p= .40, calculate the probabilities below if a sample of 300 is taken.
A. Calculate the probability the proportion of successes in the sample will be less than .42 (round 4 decimals)
B. What is the probability that the proportion of successes in the sample will be greater than .44 (round 4 decimals)
Solution
a)
The mean of the proportions is u = p = 0.40, and the standard deviation of it is
sp = sqrt(p (1-p)/n) = sqrt(0.40*(1-0.40)/300) = 0.028284271
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    0.42      
 u = mean =    0.4      
           
 sp = standard deviation =    0.028284271      
           
 Thus,          
           
 z = (x - u) / sp =    0.707106787      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   0.707106787   ) =    0.760249941 [answer]
***********************
           
 b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    0.44      
 u = mean =    0.4      
           
 s = standard deviation =    0.028284271      
           
 Thus,          
           
 z = (x - u) / s =    1.414213575      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.414213575   ) =    0.078649602 [answer]

