8 For the following named distributions find the value of EX
8. For the following named distributions, find the value of E[X2].
(a) Binomial with parameters n, p.
(b) Uniform with parameters a, b.
(c) Normal with parameters m, variance
Solution
(a) Binomial with parameters n, p.
V(x)=npq = E[X2]- E[X]2 THEREFORE E[X2]= npq+ (np)2 where np=E[X] and q=1-p
(b) Uniform with parameters a, b.
V(x)= (b-a)2/12 = E[X2]- E[X]2 therefore E[X2]= (a+b)/2 + (b-a)2/12 where E[X]=(a+b)/2
(c) Normal with parameters
![8. For the following named distributions, find the value of E[X2]. (a) Binomial with parameters n, p. (b) Uniform with parameters a, b. (c) Normal with paramete 8. For the following named distributions, find the value of E[X2]. (a) Binomial with parameters n, p. (b) Uniform with parameters a, b. (c) Normal with paramete](/WebImages/5/8-for-the-following-named-distributions-find-the-value-of-ex-983685-1761505172-0.webp)
