Let X1X2X100 be the outcome of 100 independent tosses of a f
Let X1,X2,...,X100 be the outcome of 100 independent tosses of a fair coin. Pr(Xi = 0) =Pr(Xi = 1) = 0.5. Define X = X1 - X2.
E(X) =
var(X) =
E : Expected Value, var: Variance
Probide explanation.
Solution
E[X1] = P(X1=0) * 0 + P(X1=1) * 1 = 0.5*0 + 0.5*1 = 0.5
E[X2] = P(X2=0) * 0 + P(X2=1) * 1 = 0.5*0 + 0.5*1 = 0.5
E[X} = E[X1 - X2] = E[X1] - E[X2] = 0.5 - 0.5 = 0
E[X12] = P(X1=0) * 02 + P(X1=1) * 12 = 0.5*0 + 0.5*1 = 0.5
Var(X1) = E(X12) - [E(X1)]2 = 0.5 - 0.52 = 0.25
E[X22] = P(X2=0) * 02 + P(X2=1) * 12 = 0.5*0 + 0.5*1 = 0.5
Var(X2) = E(X22) - [E(X2)]2 = 0.5 - 0.52 = 0.25
Var(X) = Var(X1 - X2) = Var(X1) + Var(X2) - 2Cov(X1 , X2)
Cov(X1 , X2) = 0 as X1 and X2 are independent.
Var(X) = 0.25 + 0.25 = 0.5

