The manager of a paint supply store wants to determine wheth
The manager of a paint supply store wants to determine whether the mean amount of paint contained in 1-gallon cans purchased from a nationally known manufacturer is actually 1 gallon. you know from the manufacturer\'s specifications that the standard deviation of the amount of paint is 0.02 gallon. you select a random sample of 50 cans and the mean amount of paint per 1-gallon can is 0.995 gallon. a, is there evidence that the mean amount is different from 1.0 gallon(use =0..01)? b, compute the p-value and interpret its meaning. c, Construct a 99% confidence interval estimate of the population mean amount of paint. d, Compare the result of (a) and (c) . what conclusions do you reach?
Solution
A)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   =   1  
 Ha:    u   =/   1  
               
 As we can see, this is a    two   tailed test.      
               
 Thus, getting the critical z, as alpha =    0.01   ,      
 alpha/2 =    0.005          
 zcrit =    +/-   2.575829304      
               
 Getting the test statistic, as              
               
 X = sample mean =    0.995          
 uo = hypothesized mean =    1          
 n = sample size =    50          
 s = standard deviation =    0.02          
               
 Thus, z = (X - uo) * sqrt(n) / s =    -1.767766953          
               
 Also, the p value is              
               
 p =    0.077099872          
               
 Comparing |z| < 2.576, (or, p > 0.01), we   FAIL TO REJECT THE NULL HYPOTHESIS.          
Thus, there is no significant evidence that the mean amount is different from 1.0 gallon. [CONCLUSION]
****************
b)
As we saw,
p = 0.077099872
Thus, the probability of getting at least a value at least this extremely far from the mean is p = 0.077099872.
********************
c)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    0.995          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    0.02          
 n = sample size =    50          
               
 Thus,              
 Margin of Error E =    0.007285545          
 Lower bound =    0.987714455          
 Upper bound =    1.002285545          
               
 Thus, the confidence interval is              
               
 (   0.987714455   ,   1.002285545   ) [ANSWER]
********************
d)
The conclusion is the same. In part C, we still fail to reject Ho since 1.00 is inside the interval.
           


