To estimate the number of calories in a cup of diced chicken
To estimate the number of calories in a cup of diced chicken breast meat, the number of calories in a sample of four separate cups of meat is measured. The sample mean is 211.8 calories with sample standard deviation 0.9 calorie. Assuming the caloric content of all such chicken meat is normally distributed, construct a 95% confidence interval for the mean number of calories in one cup of meat.
Solution
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    211.8          
 t(alpha/2) = critical t for the confidence interval =    3.182446305          
 s = sample standard deviation =    0.9          
 n = sample size =    4          
 df = n - 1 =    3          
 Thus,              
 Margin of Error E =    1.432100837          
 Lower bound =    210.3678992          
 Upper bound =    213.2321008          
               
 Thus, the confidence interval is              
               
 (   210.3678992   ,   213.2321008   ) [ANSWER]

