36 csc40 39 3 sin 0 4 cos 0 3 cos2 0 Solution36 csc4 csc2
36. csc40 39. 3 sin 0 4 cos 0 3 cos2 0
Solution
36) csc4 - csc2 = cos4 + cot2
consider csc4 - csc2 = csc2[csc2 -1]
==> csc2[cot2 ] since csc2 - cot2 = 1 ==> csc2 = 1 + cot2 , csc2 -1 = cot2
==> (1 + cot2)(cot2)
==> cot4 + cot2
Hence csc4 - csc2 = cos4 + cot2
39) 3sin2 + 4cos2 = 3 + cos2
consider 3sin2 + 4cos2
==> 3sin2 + 3cos2 + cos2
==> 3(sin2 + cos2) + cos2
==> 3(1) + cos2
==> 3 + cos2
Hence 3sin2 + 4cos2 = 3 + cos2
![36. csc40 39. 3 sin 0 4 cos 0 3 cos2 0 Solution36) csc4 - csc2 = cos4 + cot2 consider csc4 - csc2 = csc2[csc2 -1] ==> csc2[cot2 ] since csc2 - cot2 = 1 ==&g 36. csc40 39. 3 sin 0 4 cos 0 3 cos2 0 Solution36) csc4 - csc2 = cos4 + cot2 consider csc4 - csc2 = csc2[csc2 -1] ==> csc2[cot2 ] since csc2 - cot2 = 1 ==&g](/WebImages/5/36-csc40-39-3-sin-0-4-cos-0-3-cos2-0-solution36-csc4-csc2-984079-1761505398-0.webp)