36 csc40 39 3 sin 0 4 cos 0 3 cos2 0 Solution36 csc4 csc2

36. csc40 39. 3 sin 0 4 cos 0 3 cos2 0

Solution

36) csc4 - csc2 = cos4 + cot2

consider csc4 - csc2 = csc2[csc2 -1]

==> csc2[cot2 ]        since csc2 - cot2 = 1 ==> csc2 = 1 + cot2 , csc2 -1 = cot2

==> (1 + cot2)(cot2)

==> cot4 + cot2

Hence csc4 - csc2 = cos4 + cot2

39) 3sin2 + 4cos2 = 3 + cos2

consider 3sin2 + 4cos2

==> 3sin2 + 3cos2 + cos2

==> 3(sin2 + cos2) + cos2

==> 3(1) + cos2

==> 3 + cos2

Hence 3sin2 + 4cos2 = 3 + cos2

 36. csc40 39. 3 sin 0 4 cos 0 3 cos2 0 Solution36) csc4 - csc2 = cos4 + cot2 consider csc4 - csc2 = csc2[csc2 -1] ==> csc2[cot2 ] since csc2 - cot2 = 1 ==&g

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site