Binary Search Tree Given a binary tree write a function to d
(Binary Search Tree) Given a binary tree, write a function to determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: • The left subtree of a node contains only nodes with keys less than the node’s key. • The right subtree of a node contains only nodes with keys greater than the node’s key. • Both the left and right subtrees must also be binary search trees. (code either in java or C++)
Use either in-order traversal or recursion.
Solution
// Java implementation to check if given Binary tree
// is a BST or not
/* Class containing left and right child of current
node and key value*/
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
public class BinaryTree
{
// Root of the Binary Tree
Node root;
// To keep tract of previous node in Inorder Traversal
Node prev;
boolean isBST() {
prev = null;
return isBST(root);
}
/* Returns true if given search tree is binary
search tree (efficient version) */
boolean isBST(Node node)
{
// traverse the tree in inorder fashion and
// keep a track of previous node
if (node != null)
{
if (!isBST(node.left))
return false;
// allows only distinct values node
if (prev != null && node.data <= prev.data )
return false;
prev = node;
return isBST(node.right);
}
return true;
}
/* Driver program to test above functions */
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(4);
tree.root.left = new Node(2);
tree.root.right = new Node(5);
tree.root.left.left = new Node(1);
tree.root.left.right = new Node(3);
if (tree.isBST())
System.out.println(\"IS BST\");
else
System.out.println(\"Not a BST\");
}
}
input:
12345
output
IS BST



