Hi I need help with higher Physics This is the question The
Hi I need help with higher Physics. This is the question:
The homogeneous Maxwell equations are contained in the Lorentz covariant equation delta^etaF^muv + delta^vF^etamu + delta^muF^veta = 0. (Notice that the indices vary cyclically between terms.) Show that the choice of indices (eta, mu, v) = (1, 2, 3) gives nabla middot B = 0, and that the three separate choices (eta, mu, v) = (0,1, 2); (eta, mu, v) = (0,1,3); (eta, mu, v) = (0,2, 3) give the three components of Faraday\'s law. What do the other combinations such as (eta, mu, v) = (0,1,1) and (eta, mu, v) = (1,3,3) yield?Solution
14down vote
We vary the action
Ldt=(A,A)d3xdt=0Ldt=(A,A)d3xdt=0
So,
(AA+(A)(A))d3xdt=0(AA+(A)(A))d3xdt=0
(A(A))Ad3xdt=0A(A)=0(A(A))Ad3xdt=0A(A)=0
=JA+140FF=JA+140FF
A=JA=J
(A)=140((A)FF)=140((A)((AA)(AA)))=140((A)(AAAAAA+AA))(A)=140((A)FF)=140((A)((AA)(AA)))=140((A)(AAAAAA+AA))
(A)=120((A)(AAAA)).(A)=120((A)(AAAA)).
(A)(AA)=A(A)(A)+A(A)(A)=A+ggA(A)(A)=2A.(A)(AA)=A(A)(A)+A(A)(A)=A+ggA(A)(A)=2A.
We have:
(A)(AA)=2A.(A)(AA)=2A.
So,
((A))=10(AA)=10F.((A))=10(AA)=10F.
F=0J.
| 14down vote | We vary the action Ldt=(A,A)d3xdt=0Ldt=(A,A)d3xdt=0(A,A)(A,A) is the density of lagrangian of the system. So, (AA+(A)(A))d3xdt=0(AA+(A)(A))d3xdt=0By integrating by parts we obtain: (A(A))Ad3xdt=0A(A)=0(A(A))Ad3xdt=0A(A)=0We have to determine the density of the lagrangian. One terms deals with the interaction of the charges with the electromagnetic field, JAJA. The other term is the density of energy of the electromagnetic field: this term is the difference of the magnetic field and the electric field. So we have: =JA+140FF=JA+140FFWe have: A=JA=Jso: (A)=140((A)FF)=140((A)((AA)(AA)))=140((A)(AAAAAA+AA))(A)=140((A)FF)=140((A)((AA)(AA)))=140((A)(AAAAAA+AA))The third and the fourth are the same of first and the second terms. You can do kk: (A)=120((A)(AAAA)).(A)=120((A)(AAAA)).But (A)(AA)=A(A)(A)+A(A)(A)=A+ggA(A)(A)=2A.(A)(AA)=A(A)(A)+A(A)(A)=A+ggA(A)(A)=2A. We have: (A)(AA)=2A.(A)(AA)=2A. So, ((A))=10(AA)=10F.((A))=10(AA)=10F.The lagrangian equations provide the non homogeneus maxwell equations: F=0J. | 


