According to government data 20 of employed women have never
According to government data, 20% of employed women have never been married. If10 employed women are selected at random, what is the probability
 a. That exactly 2 have never been married?
 b. That at most 2 have never been married?
 c. That at least 8 have been married?
Solution
A)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    10      
 p = the probability of a success =    0.2      
 x = the number of successes =    2      
           
 Thus, the probability is          
           
 P (    2   ) =    0.301989888 [ANSWER]
***********
b)
Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    10      
 p = the probability of a success =    0.2      
 x = the maximum number of successes =    2      
           
 Then the cumulative probability is          
           
 P(at most   2   ) =    0.677799526 [answer]
****************
c)
Note that P(at least 8) = 1 - P(at most 7).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    10      
 p = the probability of a success =    0.2      
 x = our critical value of successes =    8      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   7   ) =    0.999922074
           
 Thus, the probability of at least   8   successes is  
           
 P(at least   8   ) =    0.0000779264 [answer]

