Compare the Poisson approximation with the correct binomial

Compare the Poisson approximation with the correct binomial probability for the following cases: If you buy a lottery ticket in 50 lotteries, in each of which your chance of winning a prize is 1/100, what is the (approximate) probability that you will win a prize

Solution

a)

Binomial:

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    8      
p = the probability of a success =    0.1      
x = the number of successes =    2      
          
Thus, the probability is          
          
P (    2   ) =    0.14880348 [ANSWER, BINOMIAL]

....

POISSON:

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    0.8      
          
x = the number of successes =    2      
          
Thus, the probability is          
          
P (    2   ) =    0.143785269 [ANSWER, POISSON]

They are quite close here.

**************

b)

BINOMIAL:

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    10      
p = the probability of a success =    0.95      
x = the number of successes =    9      
          
Thus, the probability is          
          
P (    9   ) =    0.315124705 [ANSWER, BINOMIAL]

POISSON:

Here, instead of counting successes, we count \"failures\" as successes, so that n = 10, p = 0.05, x = 1.

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    0.5      
          
x = the number of successes =    1      
          
Thus, the probability is          
          
P (    1   ) =    0.30326533 [ANSWER, POISSON]

They are close in this one.


****************

c)

BINOMIAL:
Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    10      
p = the probability of a success =    0.1      
x = the number of successes =    0      
          
Thus, the probability is          
          
P (    0   ) =    0.34867844 [ANSWR, BINOMIAL]

POISSON:

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    1      
          
x = the number of successes =    0      
          
Thus, the probability is          
          
P (    0   ) =    0.367879441 [ANSWER, POISSON]

They are not very close here, but maybe close enough for some purposes.

******************

D)

BINOMIAL:

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    9      
p = the probability of a success =    0.2      
x = the number of successes =    4      
          
Thus, the probability is          
          
P (    4   ) =    0.066060288 [ANSWER, BINOMIAL]

POISSON:

Note that the probability of x successes out of n trials is          
          
P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    1.8      
          
x = the number of successes =    4      
          
Thus, the probability is          
          
P (    4   ) =    0.072301734 [ANSWER, POISSON]

Here, they are also close.

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

 Compare the Poisson approximation with the correct binomial probability for the following cases: If you buy a lottery ticket in 50 lotteries, in each of which
 Compare the Poisson approximation with the correct binomial probability for the following cases: If you buy a lottery ticket in 50 lotteries, in each of which
 Compare the Poisson approximation with the correct binomial probability for the following cases: If you buy a lottery ticket in 50 lotteries, in each of which

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site