A fair coin is flipped 400 times Determine the smallest posi
     A fair coin is flipped 400 times. Determine the smallest positive integer x such that the probability that the number of heads is between 200 - x and 200 + x is at least 80%. Show your work and/or explain your answer. 
  
  Solution
u = mean = np =    200  
       
 s = standard deviation = sqrt(np(1-p)) =    10  
As the middle area is          
           
 Middle Area = P(x1<x<x2) =    0.8      
           
 Then the left tailed area of the left endpoint is          
           
 P(x<x1) = (1-P(x1<x<x2))/2 =    0.1      
           
 Thus, the z score corresponding to the left endpoint, by table/technology, is          
           
 z1 =    -1.281551566      
 By symmetry,          
 z2 =    1.281551566      
           
 As          
           
 u = mean =    200      
 s = standard deviation =    10      
           
 Then          
           
 x1 = u + z1*s =    187.1844843      
 x2 = u + z2*s =    212.8155157      
Thus,
200 + x = 212.8155157
z = 12.8155157 = 13 [ANSWER]

