b 2428 y y ea y 0 31 y 0 30 c 2430 y y sin ar y 0 0 y0 2 Sol
Solution
b ) Given that
y\'\' - y = ex , y(0) = 1 , y\'(0) = 0
Let y(s) = L [ y(x) ] (s)
y(x) = L-1 ( y(s))
y\'\' - y = ex
Take laplace transform on both sides
L [ y\'\' - y ] = L [ ex ]
L( y\'\' ) - L(y) = L ( ex )
[ s2L(y) - sy(0) - y\'(0) ] - L(y) = L ( ex )
[ s2 y(s) - sy(0) - y\'(0) ] - y(s) = 1 / s -1 [ since, L(eax) = 1/(s - a) ]
y(s) [ s2 - 1 ] - s(1) - 0 = 1 / s -1
y(s) [ s2 - 1 ] - s = 1 / s -1
y(s) [ s2 - 1 ] = ( 1 / s -1 ) + s
y(s) [ s2 - 1 ] = (s2 -1) / (s-1) = (s2 -12) / (s-1)
= ( s+1) (s-1) / (s-1) [ since, (a2 - b2) = ( a + b ) ( a - b) ]
= (s+1)
y(s) = (s+1) / (s2-1)
= (s+1) / (s+1) (s-1)
= 1 / s-1
Hence,
y(x) = L-1 ( y(s))
= L-1 ( 1 / s -1 )
y(x) = ex [since,L-1( 1/s-a) = eax ) ]
Therefore,
The solution is , y(x) = ex
c ) Given that
y\'\' + y = sinx , y(0) = 0 ,y\'(0) = 2
Let y(s) = L [ y(x) ] (s)
y(x) = L-1 ( y(s))
y\'\' + y = sinx
Take laplace transform on both sides
L [ y\'\' + y ] = L [ sin x]
L( y\'\' ) + L(y) = L ( sin x )
[ s2L(y) - sy(0) - y\'(0) ] + L(y) = L ( sin x)
[ s2 y(s) - sy(0) - y\'(0) ] + y(s) = 1 /( s2 + 12) [ since, L(sin ax) = a /(s2 + a2) ]
[ s2 y(s) - s(0) - 2 ] + y(s) = 1 /( s2 + 12)
s2 y(s) - 0 - 2 + y(s) = 1 /( s2 + 12)
s2 y(s) - 2 + y(s) = 1 /( s2 + 12)
y(s) [ s2 - 1 ] -2 = 1 /( s2 + 12)
y(s) [ s2 - 1 ] = 1 /( s2 + 12) + 2
y(s) [ s2 - 1 ] = (3+2s2) / (s2 + 1)
y(s) = (3+2s2) / (s2 + 1)(s2 - 1)
Take partial fractions of y(s) ,
y(s) = (3+2s2) / (s2 + 1)(s2 - 1) = (3 + 2s2) / (s2 + 1)(s + 1)(s - 1)
(3+2s2) / (s2 + 1)(s2 - 1 ) = (As + B)/(s2 + 1) + C/(s + 1) + D/(s - 1)
On solving ,
A = -1/2 ,B = 0 , C = -5/4 ,D = 5/4
Hence,
y(s) = (As + B)/(s2 + 1) + C/(s + 1) + D/(s - 1)
= (-1/2s + 0)/(s2 + 1) + (-5/4) / (s + 1) + (5/4)/(s - 1)
= (-1/2s)/(s2 + 1) + (-5/4) / (s + 1) + (5/4)/(s - 1)
Hence,
y(x) = L-1 ( y(s))
= L-1[ (-1/2s)/(s2 + 1) + (-5/4) / (s + 1) + (5/4)/(s - 1) ]
= L-1( (-1/2s)/(s2 + 1) ) + L-1( (-5/4) / (s + 1) ) + L-1( (5/4)/(s - 1) ) [ since,L-1(s/s2+a2) =cosat ,
y(x) = (-1/2) cosx + (-5/4)e-x + (5/4)ex L-1(1/s-a) = ex ]
Therefore,
The solution is , (-1/2) cosx + (-5/4)e-x + (5/4)ex

