b 2428 y y ea y 0 31 y 0 30 c 2430 y y sin ar y 0 0 y0 2 Sol

b) (24.28) y\" -y ea; y (0) 31, y (0) 30 c) (24.30) y\" y sin ar; y (0) 0, y\'(0) 2

Solution

b ) Given that

y\'\' - y = ex , y(0) = 1 , y\'(0) = 0

Let y(s) = L [ y(x) ] (s)

y(x) = L-1 ( y(s))

y\'\' - y = ex

Take laplace transform on both sides

L [   y\'\' - y ] = L [ ex ]

   L( y\'\' ) - L(y) = L ( ex )

[ s2L(y) - sy(0) - y\'(0) ] -  L(y) =  L ( ex )

[ s2 y(s) - sy(0) - y\'(0) ] - y(s) = 1 / s -1 [ since, L(eax) = 1/(s - a) ]

y(s) [ s2 - 1 ] - s(1) - 0 = 1 / s -1

  y(s) [ s2 - 1 ] - s = 1 / s -1  

  y(s) [ s2 - 1 ] = (  1 / s -1 ) + s

   y(s) [ s2 - 1 ] = (s2 -1) / (s-1) = (s2 -12) / (s-1)

= ( s+1) (s-1) / (s-1) [ since, (a2 - b2) = ( a + b ) ( a - b) ]

= (s+1)

y(s) =  (s+1) / (s2-1)

= (s+1) / (s+1) (s-1)

= 1 / s-1

Hence,

y(x) = L-1 ( y(s))

=  L-1 ( 1 / s -1 )

y(x) = ex [since,L-1( 1/s-a) = eax ) ]

Therefore,

The solution is ,  y(x) = ex

c ) Given that

y\'\' + y = sinx , y(0) = 0 ,y\'(0) = 2

Let y(s) = L [ y(x) ] (s)

y(x) = L-1 ( y(s))

    y\'\' + y = sinx

Take laplace transform on both sides

L [   y\'\' + y ] = L [ sin x]

     L( y\'\' ) + L(y) = L ( sin x )

[ s2L(y) - sy(0) - y\'(0) ] + L(y) =  L ( sin x)

   [ s2 y(s) - sy(0) - y\'(0) ] + y(s) = 1 /( s2 + 12) [ since, L(sin ax) = a /(s2 + a2) ]

   [ s2 y(s) - s(0) - 2 ] + y(s) = 1 /( s2 + 12)

  s2 y(s) - 0 - 2 + y(s) = 1 /( s2 + 12)

  s2 y(s) - 2 + y(s) = 1 /( s2 + 12)

y(s) [ s2 - 1 ] -2 = 1 /( s2 + 12)

   y(s) [ s2 - 1 ] = 1 /( s2 + 12) + 2

  y(s) [ s2 - 1 ] = (3+2s2) / (s2 + 1)

y(s) =  (3+2s2) / (s2 + 1)(s2 - 1)

Take partial fractions of y(s) ,

  y(s) =  (3+2s2) / (s2 + 1)(s2 - 1) = (3 + 2s2) / (s2 + 1)(s + 1)(s - 1)

  (3+2s2) / (s2 + 1)(s2 - 1 ) = (As + B)/(s2 + 1) + C/(s + 1) + D/(s - 1)  

On solving ,

A = -1/2 ,B = 0 , C = -5/4 ,D = 5/4

Hence,

y(s) =  (As + B)/(s2 + 1) + C/(s + 1) + D/(s - 1)  

=  (-1/2s + 0)/(s2 + 1) + (-5/4) / (s + 1) + (5/4)/(s - 1)

=    (-1/2s)/(s2 + 1) + (-5/4) / (s + 1) + (5/4)/(s - 1)

Hence,

y(x) =  L-1 ( y(s))

=   L-1[ (-1/2s)/(s2 + 1) + (-5/4) / (s + 1) + (5/4)/(s - 1) ]

= L-1( (-1/2s)/(s2 + 1) ) + L-1(  (-5/4) / (s + 1) ) + L-1( (5/4)/(s - 1) ) [ since,L-1(s/s2+a2) =cosat ,

y(x) = (-1/2) cosx + (-5/4)e-x + (5/4)ex L-1(1/s-a) = ex ]

Therefore,

The solution is ,   (-1/2) cosx + (-5/4)e-x + (5/4)ex

 b) (24.28) y\
 b) (24.28) y\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site