The Brayton cycle below takes in 02 kgs of air at 300 K and
Solution
1) given that ma\'=.2 kg/s ,T1=300 k,p1=100 Kpa,Rp=12 for bryton cycle temperature T1,T2,T3 AND T4 are obtain as follows, where k=1.4
(T2/T1)=(Rp)^(k-1/k) on putting value we get
T2=T1*(Rp)^(k-1/k)=300*(12)^(.4/1.4)=610.18 K AND
for temperature at exit of combustion chamber to be 1300 k ,temperature at exit of turbine to be T4
T4=T3/((Rp)^(k-1/k))=1300/(12^(.4/1.4))=639.15 k
2) heat supplied in combustion chambershould produce only temperature of 1300 k and hence mass flow rate of fuel methane at NET CALORIFIC VALUE=50000 KJ/KG AT cpg=1.191 kj/kg k at 1300 k
mf\'*NCV=(ma\'+mf\')*cpg*T3-ma\'*cpa*T2
mf\'*50000=(.2+mf\')*1.191*1300-.2*1.005*610.18
mf\'=2.834*10^-3 kg
3)mass of exhaust gas
mg\'=ma\'+mf\'
mg\'=.2+2.834*10^(-3)
mg\'=.202834 kg/s
4) work of compression wc=ma\'*cpa*(T2-T1)=.2*1.005*(610.18-300)=62.34 KW
WORK OF TURBINE=wt=mg\'*cpg*(T3-T4)=.202834*1.191*(1300-639.15)=159.64 KW
NET WORK=WT-WC=159.64-62.34=97.30 KW
5) THERMAL EFFICIENCY
n= net work/mf\'*NCV=97300/(2.834*10^-3*50000000)=68.66%
6) equation of combustion reaction
CH4+2O2=CO2+2H2O
HENCE OUT OF TOTAL EXHAUST (1/3) is CO2, HENCE MASS FLOW RATE OF CO2 IS
mco2\'=mg\'/3=.202834/3=.06760 kg/s
for year time=365*24*3600=31536000 sec
mco2\' for year=mco2\'*time=.06760*31536000=2131833.6 kg
