1 1 point Find the general form of the following differentia
Solution
Given differential equation: 2 sin^2x.y\'+ sin(2x).y=6 x^2 sinx
if solve this: y\'+ sin(2x)/2 sin^2x..y=(6 x^2 sinx/2 sin^2x.)
divid every term with 2 sin^2x.
y\'+ 2 sinx.cosx/2 sin^2x.y=(6 x^2 sinx/2 sin^2x.) [sin2x=2sinx.cosx]
y\'+ 2 sinx.cosx/2 sinxsinx.y=(6 x^2 sinx/2 sinxsinx.) [2sin^2x=2sinx.sinx]
y\'+ cotx.y=3 x^2 /sinx. [cos/sin=cot] ------------------(1)
y\'+ cotx.y=3 x^2 coscex . [cos/sin=cot]
this is like dy/dx+P(x).y=Q(x) standard form
After writing the equation in standard form, P(x) can be identified. One then multiplies the equation by the following “integrating factor”: IF=e^(\\intP(x) dx)
IF=e^log|sinx|
IF=sinx
multiply 1 with IF
sinx y\'+sinx cotx.y=3 x^2 sinx/sinx. and integrating
sinx y\'+cos x.y=3 x^2.
general form is y=3x^3-ylog|sin x|+c
![1. [1 point] Find the general form of the following differential equation by using the method of integrating factors. (Note: You should review some of your bas  1. [1 point] Find the general form of the following differential equation by using the method of integrating factors. (Note: You should review some of your bas](/WebImages/6/1-1-point-find-the-general-form-of-the-following-differentia-985354-1761506175-0.webp)
