Exclusive Or Establish using only algebraic means that A B C
Exclusive Or Establish using only algebraic means that (A B) C = A (B C) and thus we are entitled to use A B C.
Solution
A B = A\'B + AB\'
A\'B + AB\' C = (A\'B + AB\')\' C + (A\'B + AB\')C\'
= ((A\'B)\' . (AB\')\')C + A\'BC\' + AB\'C\'
= (A + B\') . (A\' + B) . C + A\'BC\' + AB\'C\'
= AA\'C + ABC + A\'B\'C + BB\'C + A\'BC\' + AB\'C\'
= ABC + A\'B\'C + A\'BC\' + AB\'C\' (LHS)
B C = (B\'C + BC\')
A (B\'C + BC\') = A\' (B\'C + BC\') + A (B\'C + BC\')\'
= A\'B\'C + A\'BC\' + A((B\'C)\' . (BC\')\')
= A\'B\'C + A\'BC\' + A((B + C\') . (B\' + C))
= A\'B\'C + A\'BC\' + ABB\' + ABC + AB\'C\' + ACC\'
= A\'B\'C + A\'BC\' + ABC + AB\'C\'
= ABC + A\'B\'C + A\'BC\' + AB\'C\' (RHS)
Therefore, both are equal.

