Find a second degree polynomial P such that PO fO PO fO an
Find a second degree polynomial P such that P(O) = f(O), P?(O) = f?(O) and P?(O)=f?(O) for f(x)=4sinx-cos4x.
Solution
f(x)= 4sin x - cos 4x implies f(0) = -1
f\'(x) = 4 cos x + 4 sin 4x implies f\'(0) = 4
f\"(x)= -4 sin x + 16 cos 4x implies f\"(0) = 16
Now suppose,
P(x) = ax^2 + bx + c hence P(0) =c
P\'(x) = 2ax + b hence P\'(0)= b
P\"(x)= 2a hence P(0) = 2a
By comparing initial conditions,
c=-1
b=4
a=8
Hence P(x) = 8x^2 + 4x -1
