Solve x sin x ex x sin x2 0 by the Newtonraphosn method w
Solution
#include<stdio.h>
 #include<math.h>
void main(){
   
 float x1, f0, fd0, e;
 float x0=-2; //initial value
 printf(\"\ \  Given equation: xsinx -e^x +x sin(x^2)\");
 //xn+1 = xn - f(xn) / f \'(xn)
 //f(x)=xsinx -e^x +x sin(x^2)
 float f(float x)
 {
    return x*sin(x) -exp(x) +x*sin(x*x);
 }
 //f\'(x)= sin x + x cos x - e^x +sin(x^2)+2x^2 cos(x^2)
 float fd(float x)
 {
    return sin(x)+x*cos(x) -exp(x) +sin(x*x) + 2*(x*x)*cos(x*x);
 }
 printf(\"\  f(x0)\\t\\tf(x0)\\t\\tx1\\t\\tError\");
 printf(\"\  -----------------------------------------------------\");
do
 {
 f0 = f(x0);
 fd0 = fd(x0);
 x1 = x0 - (f0/fd0);
 e =fabs((x1-x0)/x1);
if( e < 0.0001){
 printf(\"\ \  Approximate Root = %.5f\", x1);
 break;
 }
 else{
 printf(\"\  %.2f\\t\\t%.3f\\t\\t%.3f\\t\\t%.4f\",f(x0),fd(x0),x1,e);
 x0 = x1;
 }
 }
 while(e>=0.0001);
}

